3 research outputs found

    The satisfiability threshold for random linear equations

    Full text link
    Let AA be a random m×nm\times n matrix over the finite field FqF_q with precisely kk non-zero entries per row and let yFqmy\in F_q^m be a random vector chosen independently of AA. We identify the threshold m/nm/n up to which the linear system Ax=yA x=y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q=2q=2, known as the random kk-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases q=3,4q=3,4 [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to q>3q>3. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof

    Belief Propagation on the random kk-SAT model

    Full text link
    Corroborating a prediction from statistical physics, we prove that the Belief Propagation message passing algorithm approximates the partition function of the random kk-SAT model well for all clause/variable densities and all inverse temperatures for which a modest absence of long-range correlations condition is satisfied. This condition is known as "replica symmetry" in physics language. From this result we deduce that a replica symmetry breaking phase transition occurs in the random kk-SAT model at low temperature for clause/variable densities below but close to the satisfiability threshold

    The number of satisfying assignments of random 2-SAT formulas

    No full text
    We show that throughout the satisfiable phase the normalized number of satisfying assignments of a random 2-SAT formula converges in probability to an expression predicted by the cavity method from statistical physics. The proof is based on showing that the Belief Propagation algorithm renders the correct marginal probability that a variable is set to “true” under a uniformly random satisfying assignment
    corecore